Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 51(4): e13844, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38350599

RESUMO

Botulinum neurotoxin A (BoNT) is being shown to have anticancer action as a potential adjuvant treatment. The transient receptor potential (TRP) melastatin 2 (TRPM2) stimulator action of BoNT was reported in glioblastoma cells, but not in colorectal cancer (HT29) cells. By activating TRPM2, we evaluated the impacts of BoNT and oxaliplatin (OXA) incubations on oxidant and apoptotic values within the HT29 cells. Control, BoNT (5 IU for 24 h), OXA (50 µM for 24 h) and their combinations were induced. We found that TRPM2 protein is upregulated and mediates enhanced BoNT and OXA-induced Ca2+ entry in cells as compared to control cells. The increase of free reactive oxygen species (ROS), but the decrease of glutathione is the main ROS responsible for TRPM2 activation on H29 exposure to oxidative stress. BoNT and OXA-mediated Ca2+ entry through TRPM2 stimulation in response to H2 O2 results in mitochondrial Ca2+ overload, followed by mitochondrial membrane depolarization, apoptosis and caspase-3/-8/-9, although they were diminished in the TRPM2 antagonist groups (N-(p-amylcinnamoyl)anthranilic acid and carvacrol). In conclusion, by increasing the susceptibility of HT29 tumour cells to oxidative stress and apoptosis, the combined administration of BoNT and OXA via the targeting of TRPM2 may offer a different approach to kill the tumour cells.


Assuntos
Toxinas Botulínicas Tipo A , Neoplasias Colorretais , Canais de Cátion TRPM , Humanos , Oxaliplatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Regulação para Cima , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Morte Celular , Estresse Oxidativo/fisiologia , Apoptose/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Cálcio/metabolismo
2.
Food Funct ; 15(3): 1355-1368, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38205834

RESUMO

Dietary nutritional support for special populations is an effective and feasible method to improve the quality of life of patients and reduce medical pressure. Acer truncatum Bunge seed oil (ATSO) is widely recognized for its ability to promote nerve myelin regeneration. To evaluate the ameliorative effects of ATSO on chemotherapy-induced demyelination, a zebrafish model of chemotherapy-induced demyelination was established. The results showed that 100 µg mL-1 of ATSO reversed tail morphology damage, axon degeneration, touch response delay, ROS level upregulation and the expression of myelin basic protein decrease in chemotherapy-induced zebrafish. In addition, the expression of myelin markers (including sox10, krox20, and pmp22) in oxaliplatin-induced cells was markedly reversed by ATSO and its active components (gondoic acid, erucic acid, and nervonic acid). ATSO and its active components could reverse demyelination by ameliorating mitochondrial dysfunction. Conversely, linoleic acid and linolenic acid promoted demyelination by exacerbating mitochondrial dysfunction. Moreover, the Pink1/Parkin pathway was recognized as the main reason for ATSO and its active components improving mitochondrial function by activating mitophagy and restoring autophagic flow. Taken together, this study demonstrated that ATSO and its active components could be further developed as novel functional food ingredients to antagonize demyelination.


Assuntos
Acer , Antineoplásicos , Doenças Desmielinizantes , Doenças Mitocondriais , Animais , Humanos , Mitofagia , Oxaliplatina/farmacologia , Peixe-Zebra/metabolismo , Qualidade de Vida , Sementes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Óleos de Plantas/farmacologia , Antineoplásicos/farmacologia , Proteínas Serina-Treonina Quinases
3.
Microbiol Immunol ; 68(1): 15-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964433

RESUMO

Some chemotherapeutic drugs can induce cancer cell death and enhance antitumor T-cell immunity in cancer-bearing hosts. Immunomodulatory reagents could augment such chemotherapy-induced effects. We previously reported that oral digestion of Lentinula edodes mycelia (L.E.M.) extract or  l-arginine supplementation can augment antitumor T-cell responses in cancer-bearing mice. In this study, the effects of L.E.M. extract with or without  l-arginine on the therapeutic efficacy of immunogenic chemotherapy by 5-fluorouracil (5-FU)/oxaliplatin (L-OHP) and/or cyclophosphamide (CP) are examined using two mouse colon cancer models. In MC38 and CT26 cancer models, therapy with 5-FU/L-OHP/CP significantly suppressed tumor growth, and supplementation with L.E.M. extract halved the tumor volumes. However, the modulatory effect of L.E.M. extract was not significant. In the CT26 cancer model, supplementation with L.E.M. extract and  l-arginine had no clear effect on tumor growth. In contrast, their addition to chemotherapy halved the tumor volumes, although the effect was not significant. There was no difference in the cytotoxicity of tumor-specific cytotoxic T cells generated from CT26-cured mice treated by chemotherapy alone versus chemotherapy combined with L.E.M. extract/ l-arginine. These results indicate that the antitumor effects of immunogenic chemotherapy were too strong to ascertain the effects of supplementation of L.E.M. extract and  l-arginine, but these reagents nonetheless have immunomodulatory effects on the therapeutic efficacy of immunogenic chemotherapy in colon cancer-bearing mice.


Assuntos
Neoplasias do Colo , Cogumelos Shiitake , Camundongos , Animais , Cogumelos Shiitake/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Ciclofosfamida/uso terapêutico , Arginina/uso terapêutico , Suplementos Nutricionais
4.
Altern Ther Health Med ; 29(8): 54-59, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37652429

RESUMO

Context: Treatment failure due to multidrug resistance (MDR) is a crucial hurdle during chemotherapy. MDR is generally correlated with an upregulation of adenosine triphosphate (ATP)-binding cassette (ABC) transport proteins. Also, aberrant activation of the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway can counteract chemotherapeutic induction. Identification of safe and functioning MDR-reversing compounds is necessary in gastric-cancer therapy. Objective: The study intended to examine the role of Quercetin (Qur) in the mediation of osmotic glycoprotein (P-gp) expression and activity as an ABC transporter in the PI3K/Akt/ P-gp cascade in the oxaliplatin (OxR)-resistant, gastric-cancer cell line KATOIII/OxR. Design: The research team performed a laboratory study. Setting: The study took place at Nantong Haimen People's Hospital. Outcome Measures: The research team: (1) determined the impact of OxR on cell viability after treatment with Qur using trypan blue and "3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide" (MTT) assays; (2) employed a rhodamine 123 (Rh123) assay to detect the activity of P-gp; (3) used quantitative reverse transcription polymerase chain reaction (RT-qPCR) to measure mRNA expression of P-gp; and (4) detected apoptosis using an enzyme-linked immunoassay (ELISA) cell-death assay. Results: Qur: (1) increased the cytotoxicity of OxR; (2) downregulated the expression level and activity of P-gp and reversed MDR through the enhancement of the cytotoxicity of intracellular OxR in KATOIII/OxR cells; and (3) enhanced the apoptosis rate in KATOIII/OxR cells. Conclusions: Qur induced a dramatic reduction in the survival rate of KATOIII/OxR cells and may reverse OxR resistance through a decrease in P-gp expression and activity. These data imply that exposure of KATOIII/OxR cells in the dose-dependent manner to Qur can circumvent MDR by improving the intracellular accumulation of OxR. Qur might provide a new treatment strategy and improve patients' survival after chemotherapy for gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Oxaliplatina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Linhagem Celular Tumoral , Doxorrubicina
5.
Int J Pharm ; 641: 123082, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244464

RESUMO

Oxaliplatin (OXA) resistance remains the major obstacle to the successful chemotherapy of colorectal cancer (CRC). As a self-protection mechanism, autophagy may contribute to tumor drug resistance, therefore autophagy suppression could be regarded as a possible treatment option in chemotherapy. Cancer cells, especially drug-resistant tumor cells, increase their demand for specific amino acids by expanding exogenous supply and up-regulating de novo synthesis, to meet the needs for excessive proliferation. Therefore, it is possible to inhibit cancer cell proliferation through pharmacologically blocking the entry of amino acid into cancer cells. SLC6A14 (ATB0,+) is an essential amino acid transporter, that is often abnormally up-regulated in most cancer cells. Herein, in this study, we designed oxaliplatin/berbamine-coloaded, ATB0,+-targeted nanoparticles ((O + B)@Trp-NPs) to therapeutically target SLC6A14 (ATB0,+) and inhibit cancer proliferation. The (O + B)@Trp-NPs utilize the surface-modified tryptophan to achieve SLC6A14-targeted delivery of Berbamine (BBM), a compound that is found in a number of plants used in traditional Chinese medicine, which could suppress autolysosome formation though impairing autophagosome-lysosome fusion. We verified the feasibility of this strategy to overcome the OXA resistance during colorectal cancer treatment. The (O + B)@Trp-NPs significantly inhibited the proliferation and decreased the drug resistance of resistant colorectal cancer cells. In vivo, (O + B)@Trp-NPs greatly suppressed the tumor growth in tumor-bearing mice, which is consistent with the in vitro data. This research offers a unique and promising chemotherapeutic treatment for colorectal cancer.


Assuntos
Neoplasias Colorretais , Nanopartículas , Animais , Camundongos , Oxaliplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Autofagia , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176099

RESUMO

Smart pH-responsive niosomes loaded with either Oxaliplatin (Ox), Ylang ylang essential oil (Y-oil), or co-loaded with both compounds (Ox-Y) (Ox@NSs, Y@NSs, and Ox-Y@NSs, respectively) were formulated utilizing the thin film method. The developed nanocontainers had a spherical morphology with mean particle sizes lower than 170 nm and showed negative surface charges, high entrapment efficiencies, and a pH-dependent release over 24 h. The prepared pH-responsive niosomes' cytotoxicity was tested against the invasive triple-negative breast cancer (MDA-MB-231) cells, compared to free OX and Y-oil. All niosomal formulations loaded with Ox and/or Y-oil significantly improved cytotoxic activity relative to their free counterparts. The Ox-Y@NSs demonstrated the lowest IC50 (0.0002 µg/mL) when compared to Ox@NSs (0.006 µg/mL) and Y@NSs (18.39 µg/mL) or unloaded Ox (0.05 µg/mL) and Y-oil (29.01 µg/mL). In addition, the percentages of the MDA-MB-231 cell population in the late apoptotic and necrotic quartiles were profoundly higher in cells treated with the smart Ox-Y@NSs (8.38% and 5.06%) than those exposed to free Ox (7.33% and 1.93%) or Y-oil (2.3% and 2.13%) treatments. Gene expression analysis and protein assays were performed to provide extra elucidation regarding the molecular mechanism by which the prepared pH-sensitive niosomes induce apoptosis. Ox-Y@NSs significantly induced the gene expression of the apoptotic markers Tp53, Bax, and Caspase-7, while downregulating the antiapoptotic Bcl2. As such, Ox-Y@NSs are shown to activate the intrinsic pathway of apoptosis. Moreover, the protein assay ascertained the apoptotic effects of Ox-Y@NSs, generating a 4-fold increase in the relative protein quantity of the late apoptotic marker Caspase-7. Our findings suggest that combining natural essential oil with synthetic platinum-based drugs in pH-responsive nanovesicles is a promising approach to breast cancer therapy.


Assuntos
Antineoplásicos , Cananga , Óleos Voláteis , Neoplasias de Mama Triplo Negativas , Humanos , Oxaliplatina/farmacologia , Caspase 7 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Lipossomos , Óleos Voláteis/farmacologia , Óleos de Plantas , Antineoplásicos/farmacologia , Concentração de Íons de Hidrogênio
7.
BMC Complement Med Ther ; 23(1): 79, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899361

RESUMO

BACKGROUND: The rich biodiversity of medicinal plants and their importance as sources of novel therapeutics and lead compounds warrant further research. Despite advances in debulking surgery and chemotherapy, the risks of recurrence of ovarian cancer and resistance to therapy are significant and the clinical outcomes of ovarian cancer remain poor or even incurable. OBJECTIVE: This study aims to investigate the effects of leaf extracts from a medicinal plant Leea indica and its selected phytoconstituents on human ovarian cancer cells and in combination with oxaliplatin and natural killer (NK) cells. METHODS: Fresh, healthy leaves of L. indica were harvested and extracted in 70% methanol by maceration. The crude extract was partitioned with n-hexane, dichloromethane and ethyl acetate. Selected extracts and compounds were analyzed for their effects on cell viability of human ovarian cancer cells, NK cell cytotoxicity, and stress ligands expression for NK cell receptors. They were also evaluated for their effects on TNF-α and IL-1ß production by enzyme-linked immunosorbent assay in lipopolysaccharide-stimulated human U937 macrophages. RESULTS: Leaf extracts of L. indica increased the susceptibility of human ovarian tumor cells to NK cell-mediated cytotoxicity. Treatment of cancer cells with methyl gallate but not gallic acid upregulated the expression of stress ligands. Tumor cells pretreated with combination of methyl gallate and low concentration of oxaliplatin displayed increased levels of stress ligands expression and concomitantly enhanced susceptibility to NK cell-mediated cytolysis. Further, NK cells completely abrogated the growth of methyl gallate-pretreated ovarian cancer cells. The leaf extracts suppressed TNF-α and IL-1ß production in human U937 macrophages. Methyl gallate was more potent than gallic acid in down-regulating these cytokine levels. CONCLUSIONS: We demonstrated for the first time that leaf extracts of L. indica and its phytoconstituent methyl gallate enhanced the susceptibility of ovarian tumor cells to NK cell cytolysis. These results suggest that the combined effect of methyl gallate, oxaliplatin and NK cells in ovarian cancer cells warrants further investigation, for example for refractory ovarian cancer. Our work is a step towards better scientific understanding of the traditional anticancer use of L. indica.


Assuntos
Neoplasias Ovarianas , Plantas Medicinais , Feminino , Humanos , Extratos Vegetais/farmacologia , Oxaliplatina/farmacologia , Fator de Necrose Tumoral alfa , Células Matadoras Naturais
8.
Life Sci ; 318: 121504, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813082

RESUMO

Colorectal cancer (CRC) is one of the leading malignant diseases worldwide with a high rate of metastasis and poor prognosis. Treatment options include surgery, which is usually followed by chemotherapy in advanced CRC. With treatment, cancer cells could become resistant to classical cytostatic drugs such as 5-fluorouracil (5-FU), oxaliplatin, cisplatin, and irinotecan, resulting in chemotherapeutic failure. For this reason, there is a high demand for health-preserving re-sensitization mechanisms including the complementary use of natural plant compounds. Calebin A and curcumin, two polyphenolic turmeric ingredients derived from the Asian Curcuma longa plant, demonstrate versatile anti-inflammatory and cancer-reducing abilities, including CRC-combating capacity. After an insight into their epigenetics-modifying holistic health-promoting effects, this review compares functional anti-CRC mechanisms of multi-targeting turmeric-derived compounds with mono-target classical chemotherapeutic agents. Furthermore, the reversal of resistance to chemotherapeutic drugs was presented by focusing on calebin A's and curcumin's capabilities to chemosensitize or re-sensitize CRC cells to 5-FU, oxaliplatin, cisplatin, and irinotecan. Both polyphenols enhance the receptiveness of CRC cells to standard cytostatic drugs converting them from chemoresistant into non-chemoresistant CRC cells by modulating inflammation, proliferation, cell cycle, cancer stem cells, and apoptotic signaling. Therefore, calebin A and curcumin can be tested for their ability to overcome cancer chemoresistance in preclinical and clinical trials. The future perspective of involving turmeric-ingredients curcumin or calebin A as an additive treatment to chemotherapy for patients with advanced metastasized CRC is explained.


Assuntos
Neoplasias Colorretais , Curcumina , Citostáticos , Humanos , Curcumina/farmacologia , Irinotecano/farmacologia , Oxaliplatina/farmacologia , Cisplatino/farmacologia , Citostáticos/farmacologia , Citostáticos/uso terapêutico , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos
9.
J Biochem Mol Toxicol ; 37(5): e23325, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36843533

RESUMO

We evaluated the activity of core-shell ZnO nanoparticles (ZnO-NPs@polymer shell) containing Oxaliplatin via polymerization through in vitro studies and in vivo mouse models of colorectal cancer. ZnO NPs were synthesized in situ when the polymerization step was completed by co-precipitation. Gadolinium coordinated-ZnONPs@polymer shell (ZnO-Gd NPs@polymer shell) was synthesized by exploiting Gd's oxophilicity (III). The biophysical properties of the NPs were studied using powder X-ray diffraction (PXRD), Fourier transforms infrared spectroscopy, Ultraviolet-visible spectroscopy (UV-Vis), field emission electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy, dynamic light scattering, and z-potential. (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) was used to determine the antiproliferative activity of ZnO-Gd-OXA. Moreover, a xenograft mouse model of colon cancer was exerted to survey its antitumor activity and effect on tumor growth. In the following, the model was also evaluated by histological staining (H-E; Hematoxylin & Eosin and trichrome staining) and gene expression analyses through the application of RT-PCR/ELISA, which included biochemical evaluation (MDA, thiols, SOD, CAT). The formation of ZnO NPs, which contained a crystallite size of 16.8 nm, was confirmed by the outcomes of the PXRD analysis. The Plate-like morphology and presence of Pt were obtained in EDX outcomes. TEM analysis displayed the attained ZnO NPs in a spherical shape and a diameter of 33 ± 8.5 nm, while the hydrodynamic sizes indicated that the particles were highly aggregated. The biological results demonstrated that ZnO-Gd-OXA inhibited tumor growth by inducing reactive oxygen species and inhibiting fibrosis, warranting further research on this novel colorectal cancer treatment agent.


Assuntos
Neoplasias do Colo , Nanopartículas , Óxido de Zinco , Humanos , Camundongos , Animais , Oxaliplatina/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas/química , Extratos Vegetais/química
10.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768934

RESUMO

The mammalian target of rapamycin (mTOR) is often activated in several cancers. We focused on two mTOR regulatory mechanisms: oxaliplatin-induced mTOR signaling and L-type amino acid transporter 1 (LAT1)-induced mTOR activation. High LAT1 expression in several cancers is associated with mTOR activation and resistance to chemotherapy. However, the significance of LAT1 has not yet been elucidated in colorectal cancer (CRC) patients treated with post-operative adjuvant chemotherapy. Immunohistochemistry was conducted to examine the significance of membrane LAT1 expression in 98 CRC patients who received adjuvant chemotherapy, including oxaliplatin. In vitro analysis was performed using CRC cell lines to determine the effects of LAT1 suppression on proliferation, oxaliplatin sensitivity, and mTOR signaling. LAT1 expression was associated with cancer aggressiveness and poor prognosis in 98 CRC patients treated with adjuvant chemotherapy. We found that positive LAT1 expression correlated with shorter survival in 43 patients treated with the capecitabine-plus-oxaliplatin (CAPOX) regimen. LAT1 suppression in CRC cells inhibited the proliferation potency and oxaliplatin-induced activation of mTOR signaling, and improved oxaliplatin sensitivity. LAT1 evaluation before adjuvant treatment may therefore be a sensitive marker for oxaliplatin-based regimens. Moreover, LAT1 may be a promising target for patients with refractory CRC.


Assuntos
Neoplasias Colorretais , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante , Neoplasias Colorretais/metabolismo , Fluoruracila/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
11.
ACS Appl Mater Interfaces ; 15(3): 3781-3790, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631295

RESUMO

The activation of nanoparticles (NPs) in the tumor microenvironment exerts synergistic therapeutic effects with chemotherapy against multiple cancers. In this study, an NP system prepared using biocompatible MIL-100 NPs was studied as an effective vehicle to deliver oxaliplatin for hepatocellular carcinoma treatment. The NPs were coated with polydopamine (PDA) and NH2-PEGTK-COOH and then loaded with oxaliplatin to create the multi-functional NP Oxa@MIL-PDA-PEGTK. Oxa@MIL-PDA-PEGTK is activated in the tumor microenvironment, causing the generation of cytotoxic reactive oxygen species (ROS) via the Fenton reaction and the release of the loaded oxaliplatin. In addition, under near-infrared (NIR) irradiation, Oxa@MIL-PDA-PEGTK can generate hyperthermia at tumor sites. Moreover, owing to the light-induced activation of the Oxa@MIL-PDA-PEGTK NPs, higher drug delivery efficiency, more precise targeted activation, and reduced off-target toxicity were observed in in vitro and in vivo experiments. Taken together, owing to its improved drug delivery efficiency and multi-functional activities, including the ability for targeted chemotherapy coupled with photothermal and chemodynamic therapy, Oxa@MIL-PDA-PEGTK may serve as a new approach for treating hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Estruturas Metalorgânicas , Nanopartículas , Humanos , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Lasers , Neoplasias Hepáticas/terapia , Estruturas Metalorgânicas/farmacologia , Oxaliplatina/farmacologia , Fototerapia , Terapia Fototérmica , Microambiente Tumoral
12.
Sci Prog ; 106(1): 368504221147173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36718538

RESUMO

Colorectal cancer (CRC) can be resistant to platinum drugs, possibly through ferroptosis suppression, albeit the need for further work to completely understand this mechanism. This work aimed to sum up current findings pertaining to oxaliplatin resistance (OR) or resistance to ascertain the potential of ferroptosis to regulate oxaliplatin effects. In this review, tumor development relating to iron homeostasis, which includes levels of iron that ascertain cells' sensitivity to ferroptosis, oxidative stress, or lipid peroxidation in colorectal tumor cells that are connected with ferroptosis initiation, especially the role of c-Myc/NRF2 signaling in regulating iron homeostasis, coupled with NRF2/GPX4-mediated ferroptosis are discussed. Importantly, ferroptosis plays a key role in OR and ferroptotic induction may substantially reverse OR in CRC cells, which in turn could inhibit the imbalance of intracellular redox induced by oxaliplatin and ferroptosis, as well as cause chemotherapeutic resistance in CRC. Furthermore, fundamental research of small molecules, ferroptosis inducers, GPX4 inhibitors, or natural products for OR coupled with their clinical applications in CRC have also been summarized. Also, potential molecular targets and mechanisms of small molecules or drugs are discussed as well. Suggestively, OR of CRC cells could significantly be reversed by ferroptosis induction, wherein this result is discussed in the current review. Prospectively, the existing literature discussed in this review will provide a solid foundation for scientists to research the potential use of combined anticancer drugs which can overcome OR via targeting various mechanisms of ferroptosis. Especially, promising therapeutic strategies, challenges ,and opportunities for CRC therapy will be discussed.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Platina/farmacologia , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Procedimentos Clínicos , Ferro/metabolismo , Ferro/farmacologia , Neoplasias Colorretais/tratamento farmacológico
13.
Biochem Biophys Res Commun ; 638: 94-102, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442237

RESUMO

Chemotherapy resistance is the primary cause of high mortality in patients with advanced colon cancer. The combination of small molecule compound dioscin (DIO) and traditional medicine may have a chemosensitizing effect. In this study, we reported that DIO, in combination with Oxaliplatin (L-OHP) and 5-fluorouracil (5-Fu), can effectively inhibit colon cancer cell proliferation, and co-treatment was positively related to the DIO concentration. HCT116 co-treatment with 6.4 µM L-OHP and 0.8 µM DIO significantly reduced colony formation and migration, increased apoptosis, and cell-cycle arrest in the G0/G1 and G2/M phase. DIO-assisted L-OHP significantly inhibited the xenograft model growth and exhibited low toxicity.The mRNA-sequencing combined with network pharmacological analysis suggested that the DIO sensitivity may be related to the active targets FAS, CDKN1A, ABCA1, and PPARA, which are primarily involved in regulating the cell cycle and apoptosis. Finally, our experiments suggest that DIO may enhance the L-OHP sensitivity by regulating the cell cycle through the Notch pathway.


Assuntos
Neoplasias do Colo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias do Colo/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Apoptose , Linhagem Celular Tumoral
14.
Acta Pharmacol Sin ; 44(1): 178-188, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35676532

RESUMO

Activation of vitamin D receptor (VDR) in cancer-associated fibroblasts (CAFs) has been implicated in hesitating tumor progression and chemoresistance of several human malignancies. Yet, the role of VDR in CAF-induced chemotherapy resistance of gastric cancer (GC) cells remains elusive. In this study we first conducted immunohistochemistry analysis on tissue microarrays including 88 pairs of GC and normal mucosa samples, and provided clinical evidence that VDR was mainly expressed in gastric mucous cells but almost invisible in CAFs, and VDR expression was negatively correlated with malignant clinical phenotype and advanced stages, low VDR expression confers to poor overall survival rate of patients with GC. In a co-culture system of primary CAFs and cancer cells, we showed that treatment of HGC-27 and AGS GC cells with VDR ligand calcipotriol (Cal, 500 nM) significantly inhibited CAF-induced oxaliplatin resistance. By using RNA-sequencing and Human Cytokine Antibody Array, we demonstrated that IL-8 secretion from CAFs induced oxaliplatin resistance via activating the PI3K/AKT pathway in GC, whereas Cal treatment greatly attenuated the tumor-supportive effect of CAF-derived IL-8 on GC cells. Taken together, this study verifies the specific localization of VDR in GC tissues and demonstrates that activation of VDR abrogates CAF-derived IL-8-mediated oxaliplatin resistance in GC via blocking PI3K/Akt signaling, suggesting vitamin D supplementation as a potential strategy of enhancing the anti-tumor effect of chemotherapy in GC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/metabolismo , Oxaliplatina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Interleucina-8/uso terapêutico , Linhagem Celular Tumoral
15.
Phytother Res ; 37(2): 563-577, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36184899

RESUMO

Colorectal cancer (CRC) is a very common and deadly cancer worldwide, and oxaliplatin is used as first-line chemotherapy. However, resistance usually develops, limiting treatment. Echinatin (Ech) is the main component of licorice and exhibits various therapeutic effects on inflammation-mediated diseases and cancer, ischemia/reperfusion, and liver injuries. The present study elucidated the underlying molecular mechanism of Ech-induced apoptosis in both oxaliplatin-sensitive (HT116 and HT29) and -resistant (HCT116-OxR and HT29-OxR) CRC cells. To evaluate the antiproliferative activities of Ech, we performed MTT and soft agar assays. Ech reduced viability, colony size, and numbers of CRC cells. The underlying molecular mechanisms were explored by various flow cytometry analyses. Ech-induced annexin-V stained cells, reactive oxygen species (ROS) generation, cell cycle arrest, JNK/p38 MAPK activation, endoplasmic reticulum (ER) stress, mitochondrial membrane potential depolarization, and multi-caspase activity. In addition apoptosis-, cell cycle-, and ER stress-related protein levels were confirmed by western blotting. Moreover, we verified ROS-mediated cell death by treatment with inhibitors such as N-acetyl-L-cysteine, SP600125, and SB203580. Taken together, Ech exhibits anticancer activity in oxaliplatin-sensitive and -resistant CRCs by inducing ROS-mediated apoptosis through the JNK/p38 MAPK signaling pathway. This is the first study to show that Ech has the potential to treat drug-resistant CRC, providing new directions for therapeutic strategies targeting drug-resistant CRC.


Assuntos
Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxaliplatina/farmacologia , Linhagem Celular Tumoral , Apoptose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
16.
Pancreas ; 51(6): 684-693, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099493

RESUMO

OBJECTIVES: Pharmacological ascorbate (P-AscH - , high-dose, intravenous vitamin C) has shown promise as an adjuvant therapy for pancreatic ductal adenocarcinoma (PDAC) treatment. The objective of this study was to determine the effects of P-AscH - when combined with PDAC chemotherapies. METHODS: Clonogenic survival, combination indices, and DNA damage were determined in human PDAC cell lines treated with P-AscH - in combination with 5-fluorouracil, paclitaxel, or FOLFIRINOX (combination of leucovorin, 5-fluorouracil, irinotecan, oxaliplatin). Tumor volume changes, overall survival, blood analysis, and plasma ascorbate concentration were determined in vivo in mice treated with P-AscH - with or without FOLFIRINOX. RESULTS: P-AscH - combined with 5-fluorouracil, paclitaxel, or FOLFIRINOX significantly reduced clonogenic survival in vitro. The DNA damage, measured by γH2AX protein expression, was increased after treatment with P-AscH - , FOLFIRINOX, and their combination. In vivo, tumor growth rate was significantly reduced by P-AscH - , FOLFIRINOX, and their combination. Overall survival was significantly increased by the combination of P-AscH - and FOLFIRINOX. Treatment with P-AscH - increased red blood cell and hemoglobin values but had no effect on white blood cell counts. Plasma ascorbate concentrations were significantly elevated in mice treated with P-AscH - with or without FOLFIRINOX. CONCLUSIONS: The addition of P-AscH - to standard of care chemotherapy has the potential to be an effective adjuvant for PDAC treatment.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ácido Ascórbico/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Fluoruracila , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Leucovorina/farmacologia , Leucovorina/uso terapêutico , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Paclitaxel , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
17.
Lett Appl Microbiol ; 75(4): 951-956, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35699349

RESUMO

Cisplatin was originally discovered through its antibacterial action and subsequently has found use as a potent broad-spectrum anticancer agent. This study determines the effect of growth media and solvent on the antibacterial activity of cisplatin and its analogue, oxaliplatin. Escherichia coli MG1655 or MG1655 ΔtolC was treated with the platinum compounds under different conditions and susceptibility was determined. Our results showed that DMSO reduced the activity of cisplatin by fourfold (MIC 12·5 mg l-1 ) compared with 0·9% NaCl-solubilized cisplatin (MIC 3·12 mg l-1 ) when tested in MOPS. Surprisingly, complete loss of activity was observed in Mueller-Hinton Broth II (MHB II). By supplementing MOPS with individual components of MHB II such as the sulphur-containing amino acids, l-cysteine and l-methionine, individually or in combination reduced activity by ≥8-fold (MIC ≥25 mg l-1 ). Oxaliplatin was less active against E. coli (MIC 100 mg l-1 ) but exhibited similar inactivation in the presence of DMSO, MHBII or MOPS spiked with l-cysteine and l-methionine (MIC ≥400 mg l-1 ). Our data suggest that the antibacterial activity of cisplatin and oxaliplatin is modulated by both choice of solvent and composition of growth media. We demonstrate that this is primarily due to sulphur-containing amino acids cysteine and methionine, an essential component of the recommended media for testing antimicrobial susceptibility, MHBII.


Assuntos
Antineoplásicos , Cisplatino , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Cisplatino/química , Cisplatino/farmacologia , Meios de Cultura/farmacologia , Cisteína , Dimetil Sulfóxido/farmacologia , Escherichia coli , Metionina/química , Metionina/farmacologia , Testes de Sensibilidade Microbiana , Oxaliplatina/farmacologia , Solução Salina/farmacologia , Solventes , Enxofre
18.
ESMO Open ; 7(3): 100484, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35576696

RESUMO

BACKGROUND: A comprehensive analysis of peripheral immune cell phenotypes and tumor immune-gene expression profiles in locally advanced pancreatic cancer patients treated with neoadjuvant chemotherapy in a phase II clinical trial was carried out. METHODS: Patients were treated with neoadjuvant modified folinic acid, fluorouracil, irinotecan hydrochloride, oxaliplatin (mFOLFIRINOX) followed by surgery and adjuvant gemcitabine at the Asan Medical Center. Correlations between survival outcomes and baseline peripheral immune cells and their changes during preoperative chemotherapy were analyzed. Patients who had surgery were divided into two groups according to achievement of disease-free survival >10 months (achieved versus failed). Differential expression and pathway analysis of immune-related genes were carried out using the Nanostring platform, and immune cells within the tumor microenvironment were compared by immunohistochemistry. RESULTS: Forty-four patients were treated in the phase II clinical trial. Higher baseline CD14+CD11c+HLA-DR+ monocytes (P = 0.044) and lower Foxp3+CD4+ T cells (P = 0.02) were associated with poor progression-free survival of neoadjuvant mFOLFIRINOX. During the preoperative chemotherapy, PD-1 T cells significantly decreased (P = 0.0110). Differential expression and pathway analysis of immune-genes from the resected tumor after neoadjuvant treatment revealed transforming growth factor-ß pathway enrichment and higher expression of MARCO (adjusted P < 0.05) associated with early recurrence. Enrichment of the Th1 pathway and higher peritumoral CD8+ T cells (P = 0.0103) were associated with durable disease-free survival from surgery (>10 months) following neoadjuvant mFOLFIRINOX. CONCLUSIONS: Our results identify potential immune biomarkers for locally advanced pancreatic cancer and provide insights into pancreatic cancer immunity.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Leucovorina/farmacologia , Leucovorina/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Transcriptoma , Microambiente Tumoral
19.
Integr Cancer Ther ; 21: 15347354221090221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35426328

RESUMO

AIM: To investigate the mechanisms employed by PS-T (polysaccharides of Trametes, PS-T), the main active ingredient of Huaier granules, to improve the susceptibility of hepatoma cells to oxaliplatin (OXA). METHODS: Cell proliferation in response to PS-T was determined both in vitro and in vivo. The effects of PS-T on miRNAs were analyzed with the use of a microarray. MiRNAs were screened under specific conditions (P < .05, logFoldChange > ABS [1.5]) and further silenced or overexpressed by liposome transfection. Levels of ABCB1 mRNA and P-gp were detected by qRT-PCR and western blot analysis, respectively. A dual fluorescence assay was performed to determine whether miRNA directly targets ABCB1. RESULTS: PS-T enhanced the inhibitory effect of OXA in human hepatoma cells and xenografts. Among 5 up-regulated miRNAs, overexpression of only miR-224-5p inhibited the expression of ABCB1 mRNA and P-gp, while silencing of miR-224-5p had an opposite effect. Moreover, miR-224-5p can directly target the 3'-UTR of ABCB1. CONCLUSION: PS-T increases the sensitivity of human hepatoma cells to OXA via the miR-224-5p/ABCB1/P-gp axis.


Assuntos
Agaricales , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxaliplatina/farmacologia , Polyporaceae , Polissacarídeos/farmacologia , RNA Mensageiro/genética , Trametes/genética , Trametes/metabolismo
20.
Adv Healthc Mater ; 11(12): e2102739, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306756

RESUMO

Cancer immunotherapy is revolutionary in oncology and hematology. However, a low response rate restricts the clinical benefits of this therapy owing to inadequate T lymphocyte infiltration and low delivery efficiency of immunotherapeutic drugs. Herein, an intelligent nanovehicle (folic acid (FA)/1-(4-(aminomethyl) benzyl)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (IMDQ)-oxaliplatin (F/IMO)@CuS) armed with multifunctional navigation is designed for the accurate delivery of cargoes to tumor cells and dendritic cells (DCs), respectively. The nanovehicle is based on a near infrared-responsive inorganic CuS nanoparticles, acting as a photosensitizer and carrier of the chemotherapeutic agent oxaliplatin, and enters tumor cells owing to the presence of folic acid on the surface of CuS upon intratumoral injection. Furthermore, a toll-like receptor (TLR) 7/8 agonist-conjugated polymer, anchored on the surface of CuS, is modified with mannose to bind with DCs in the tumor microenvironment. Upon exposure to laser irradiation, nanovehicles disassemble, releasing oxaliplatin, to ablate tumor cells and amplify immunogenic cell death in combination with photothermal therapy. Mannose-modified polymer-TLR7/8 agonist conjugates are subsequently exposed, leading to the activation of DCs and proliferation of T cells. Collectively, these intelligent nanovehicles reduce tumor burden, exert a robust antitumor immune response, and generate long-term immune protection to prevent tumor recurrence.


Assuntos
Nanopartículas , Neoplasias , Adjuvantes Imunológicos , Linhagem Celular Tumoral , Ácido Fólico , Humanos , Morte Celular Imunogênica , Imunoterapia , Manose , Neoplasias/tratamento farmacológico , Oxaliplatina/farmacologia , Polímeros , Receptor 7 Toll-Like/agonistas , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA